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Thermal Vibrations and a Lattice Mode in Calcite and Sodium Nitrate 
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(Received 30 July 1969) 

The observed direction of thermal motion of the oxygen atoms in calcite can be explained if the 
environment of the calcium atom is taken into consideration as well as the CO3 group. Rotation of Ca 
octahedra accompanied by an alternate steepening and flattening which retains the 3 point-symmetry 
and the Ca-O bond-length unchanged is associated with a screw-like movement of CO3 in which 
rotation in its own plane is geared to translation perpendicular to its plane. Concerted movements 
of all atoms in the structure satisfying these requirements can be described in terms of a single oscil- 
lating parameter; they represent a single lattice mode. They are predictable using the assumption that 
small departures, in the 'static' structure, of particular position parameters from ideal values indicate 
weaknesses of a kind that allow a large amplitude to vibrations in which the same parameters oscillate 
about their 'static' value. Comparison of CaCO3 and the isomorphous NaNO3 with LaA103 and 
LiNbO3, which have very similar formal geometry but great differences in relative bond strength, 
helps to illustrate the principle involved. 

Introduction 

Recent accurate work on the anisotropic thermal dis- 
placements of oxygen atoms in calcite (Chessin, 
Hamilton & Post, 1965) and the isomorphous sodium 
nitrate (Cherin, Hamilton & Post, 1967)gave results 
which are at first sight surprising, and which the au- 
thors do not attempt to explain. They observed that 
while the displacement ellipsoid had its shortest prin- 
cipal axis along the C-O or N-O bond, as expected, 
its longest axis was not in the plane of the CO3 or 
NO3 group, but inclined at about 45 ° to it. 

Consideration of the problem on the lines to be de- 
scribed below showed, however, that not only was the 
direction of the large displacement amplitude capable 
of explanation, but it could actually have been pre- 
dicted from a knowledge of the 'static' structure and 
certain rather general principles. Since the approach 
used may be a help towards analysing and interpreting 
thermal modes in other structures, the argument will 
be developed as if the thermal amplitudes in this case 
had not been known but had to be predicted. 

The (static) structure 

Calcite and sodium nitrate are isomorphous, with 
space group R3c. Using hexagonal axes of reference, 
there are 6 formula units per cell, with atoms in special 
positions as follows" 

Ca o r N a i n  6(b), 0 , 0 , 0  
C o r N  in 6(a), 0 ,0,¼ 

O i n l 8 ( e ) ,  x, 0,¼. 

The lattice parameters and oxygen position parameters 
at room temperature are as follows: 

CaCO3 NaNO3 
a (A) 4.990 5.071 
c (A) 17.002 16.825 
x 0.2571 0.2456 

One usually thinks of the structure as built from planar 
CO3 or NO3 groups arranged at nodes of a rhombo- 
hedral lattice with their planes perpendicular to the 
triad, and Ca or Na ions midway between them. This 
description, however, fails to direct attention to the 
grouping of oxygen atoms round the Ca or Na, which 
is essential for our present discussion. We therefore 
take a different approach, beginning with the oxygen 
atoms and leaving out the carbon or nitrogen atoms 
until we have found suitable interstices in which to 
place them. 

It is convenient to re-write the oxygen parameter x 
as ½+4, where 4 = - 0 . 0 7 6 2  for CaCO3, -0 .0877 for 
NaNO3. This will allow geometrical comparison with 
the oxygen array in high-temperature LiNbO3 
(Megaw, 1968a) for which 4 =  +0.0492, and with an 
ideal hexagonal close-packing, for which 4=0 .  

Consider a hexagonally close-packed array of oxy- 
gen atoms. Let the origin be taken on a centre of sym- 
metry midway between layers, so that layer heights (in 
arbitrary units) are 1, 3, 5, 7 . . . .  There are octahedral 
interstices at the symmetry centres between the layers. 
Suppose cations are inserted in those at heights 0 and 
6 along the same triad axis (A or A' in Fig. 1) and 
repeated by rhombohedral lattice translations so that 
they come at heights 4 and 10 along the triad axis 
through B, 8 and 14 along the triad axis through C. 
The other interstices are left empty, and cease to be 
symmetry centres. The height of the unit cell is 12 
units, i.e. there are 6 layers of oxygen atoms per cell. 
The filled octahedra share corners, building up a three- 
dimensional corner-linked framework. This ideal struc- 
ture is the actual structure of RhF3 and PdF3 (Hep- 
worth, Jack, Peacock & Westland, 1957). 

Changing the value of ~ does not change the linkage 
pattern of the structure. It represents a rotation of the 
filled octahedra about their triad axes, alternate octa- 
hedra rotating in opposite senses. Figs. 2(a) and 3(a), 
2(c) and 3(b), show this for positive and negative values 
of ~ respectively; the positive value corresponds to an 
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opening out of the structure, in which the two cation- 
oxygen bonds become more nearly coUinear, and the 
negative value to a contraction in which the inter-bond 
angle decreases and the octahedra overlap in projec- 
tion. The parameter ~ is in fact a measure of the 
azimuthal tilt angle co; it is easily shown by geometry 
that o9 = 3~ cos re/6. 

Examples of frameworks of this kind with positive 
values of ~ are found in VF3 (Jack & Gutmann, 1951) 
and the NbO3 framework of high-temperature LiNbO3 
(Megaw, 1968a). The azimuthal tilts are roughly 10 ° 
and 7 ° respectively. If they were 30 ° (~= +0.17) the 
structure would be fully opened out, with the two 
cation-oxygen bonds collinear; this would be the ideal 
perovskite framework. In CaCO3 and NaNO3, how- 
e'ver, ~ has negative values corresponding to tilts of 
about - 1 2  ° and - 1 4  ° respectively. Thus one may 
think of the cation-oxygen framework in these struc- 
tures as a perovskite framework which has contracted 
so far that it has actually overshot the close-packed state. 

During these rotations, we have assumed that the 
filled octahedra behave as rigid bodies. The same is 
not true of the empty octahedra, which change shape. 
The only feature we need consider is their shared face. 
In hexagonal close-packing it is equal in size to the 
faces of the filled octahedra. As ~ changes, it remains 
an equilateral triangle, but its corners (which belong 
to different filled octahedra) move apart for positive 
values of ~, close in for negative values of ~ (Fig. 3). 
It is clear that the centre of this triangle must provide 
the site for C or N; and th.at therefore the azimuthal 
tilt, which determines the size of the triangle, will be 
controlled by the need to provide the correct C-O or 
N-O distance. In fact it is only the presence of C or 
N that makes possible the negative tilt, because the 
O-O edge lengths of the triangle would be too small 
for stability if the corners were not bonded to a central 
atom. 

Geometrically, the structure is fully determined by 
its symmetry and the three parameters a, c and ~. It is 
useful to relate these to three structure-building par- 
ameters, of which two are obviously the C-O and 
Ca-O (or N-O and Na-O) bond lengths; we take the 
third to be the angle between Ca-O (or Na-O) and 
the triad axis. Let these new parameters be 11, 12, ¢. 
Then, by simple geometry, 

1 /l = Ta(1 +30, 
,[ c2 ],,2 

1 2 = f f a  ( 1 - 3 3 + 9 ~  2 ) + ~  , 

a 9~2)1/2 tan ~0= 4 c ( 1 - 3 ~ +  

1,~,9~//'/ c //,~A- 3,_7,11 

)3,7.1:,2 / 3.7,: (~ 

3,7,11 1,5,9 
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Fig. 1. Projection on (0001) of hexagonally close-packed array 
of oxygen atoms, with octahedra outlined. Unit cell shown 
by dashed line; origin is at A. Heights are in units of c/12. 
Heights of centres of filled octahedra projecting at A, B 
and C are marked. 
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Fig. 2. Projection on (0001) of four octahedra of corner-linked structure, (a) with ~ positive, (b) with ~ zero (ideal close packing), 
(c) with ~ negative. Conventions as in Fig. 1, except that thick, thin, and dashed lines are used for octahedra centred at three 
different heights, and upper faces of octahedra are indicated. 
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These equations allow us to make any needed calcula- 
tions about the shapes and sizes of parts of the struc- 
ture (see Appendix). In particular, if the lengths ll,/2, 
and the angle ~0 are known beforehand, we can predict 
the lattice constants a and c and the azimuthal tilt. 
The lengths are (in principle) known from other struc- 
tures in which the same bonds appear; the angle ~0 
needs further discussion. 

At this stage, we invoke a general principle which 
may be stated as follows. 

In a structure with a given linkage pattern, the group 
of neighbours immediately surrounding each cation 
tends to have the highest local symmetry possible 
without reconstruction of the linkage pattern, except 
in so far as it is distorted by other near-neighbour 
forces. 

(The term 'second-nearest neighbour' is deliberately 
avoided, because it cannot be defined in a way that 
meets the point, and without definition is misleading. 
'Near-neighbour forces' in the above context may for 
example be cation-cation repulsions through a 'win- 
dow' formed by anions, or anion-anion repulsions in 
polyhedron edges or between polyhedra; they do not 
include interactions between atoms heavily shielded 
from each other by intervening parts of the structure.) 

In the present case we therefore assume, as a first 
approximation, that the octahedron surrounding Ca 
will be regular, though this is not a space-group re- 
quirement. This gives us ~0 = 54"7 °. We need also esti- 
mates of the C-O and Ca-O bond lengths from other 
structures; for the former, Sass, Vidale & Donohue 
(1957) suggest 1.26 ~ as a reasonable value, and for 
the latter the sum of the Goldschrnidt radii gives 

2.38 ~.  Substitution in the above equations gives 
a=5.07, c=16.4 .~,, ~ = - 0 . 0 8 5 ,  in very reasonable 
agreement with the observed values. 

If we want to improve on this approximation, it can- 
not be done merely by putting in a better value of the 
C-O length (supposing we had better a pr ior i  means 
of knowing it). It is easily seen that a fault still lies in 
the assumed value of ~0, for which the experimental 
value turns out to be 53.1 °, i.e. the octahedron is some- 
what elongated along the triad axis. By the principle 
enunciated above, we must look for another near- 
neighbour interaction tending to produce elongation. 
This is easily found: it is the Ca-C repulsion along 
the triad axis. (Though the carbon atom is certainly 
not to be taken as ionic, it carries some residual posi- 
tive charge.) Ca and C are separated by about 4.2 A, 
and 'see' one another through the face of the Ca octa-" 
hedron; hence a small but non-negligible repulsion is 
to be expected. Opposing it are the forces responsible 
for maintaining the shape of the regular octahedron, 
which may include oxygen-oxygen repulsions in the 
octahedron edges as well as forces favouring 90 ° bond 
angles at Ca. The observation that distortion occurs, 
but remains small, is evidence that the Ca-C repulsive 
forces and the shape-maintaining forces are of the 
same order of magnitude. Since the former forces are 
small, it follows that the octahedron is rather 'soft' 
with respect to compression or elongation along the 
triad axis. 

The attribution of the elongation to cation-'cation' 
repulsion is supported by the fact that it is much smaller 
for sodium nitrate (rp=54"4 °) where the electrostatic 
charges are smaller. Moreover, in calcite the octa- 
hedron becomes slightly more regular at lower tern- 
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Fig. 3. Pa~ t of the same projection as Fig. 2, showing complete environment of one calcium atom and one carbon atom projecting 
at C, (a) with ~ positive, (b) with ~ negative. Arrows show direction of rotation of octahedra centred at A.6, B.4, C.2. Heavy 
dotted lines show bonds from carbon at C.5 to three oxygen atoms. Dashed lines in (b) indicate outlines of octahedra over- 
lapped by others at higher level. 
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peratures (A~0=0.15 ° for A T = - 1 7 0 ° C )  where we 
should expect the shape-maintaining forces to be rel- 
atively greater. 

So far, we have shown 
(i) that the shape and size of the calcite unit cell, and 

its atomic position parameter (determining the azi- 
muthal tilt angle) can be predicted to a good approxi- 
mation merely from a knowledge of the usual Ca-O 
and C-O bond lengths and an assumption of regularity 
in the octahedron; 

(ii) that the small differences between this approxima- 
tion and the observed structure can be explained qual- 
itatively by assuming 'softness' in the octahedron 
against forces (originating in cation- 'cation'  repulsion) 
which tend to stretch or compress it along its triad axis. 

The ideas of structure-building that have given an 
understanding of the 'static' structure can now be car- 
ried over to help to explain the character of the vibra- 
tions it can undergo. 

Rules for the vibrating structure 

The character of the static structure suggests the gen- 
eral rules likely to be satisfied by the structure when 
undergoing any thermal vibration of reasonably large 
amplitude. They are as follows. 

(1) The C-O bond length will remain constant. 
(2) The Ca-O bond length will remain constant. 
(3) The Ca octahedron will not lose any symmetry, 

and can therefore change its shape, if at all, only 
by changes in its ~0 angle, i.e. by stretching or com- 
pression along its triad axis. 

(4) The CO3 group will retain its trigonal symmetry. 

These conditions should preferably be satisfied through- 
out the whole vibration, but at any rate they should 
hold good at either extreme. We assume that modes 
which do not satisfy them will have much smaller 
amplitudes, so small that we can here neglect them 
altogether. 

To find the character of the mode, we consider the 
crystal as instantaneously frozen in one extreme posi- 
tion. The problem then is, by arguments of symmetry 
and by trial and error, to find a set of displacements 
which give an instantaneous structure satisfying the 
above rules. 

Deduction of the:most important mode 

We begin by assuming that the CO3 group behaves as 
a rigid body with a large amplitude corresponding to 
rotation in its own plane about the triad axis. This 
satisfies rules (1) and (4). The lines of displacement of 
the oxygen atoms are shown in Fig. 4 as short heavy 
lines (though the amplitudes are not to scale). 

Consider the extremity of the oscillation at which 
the CO3 group centred vertically above A at height ~z 
(which we shall call A.3) has moved clockwise, as 
shown by the arrows in Fig. 4. So will all other groups 

related to it by lattice translations, e.g.B.7, C. 11. We 
have to ask: will the other group, that at A.9 (and its 
translation repeats at B.1, C.5), have moved clockwise 
(towards the black circles) or anticlockwise (towards 
the open circles)? The possibilities are shown in Fig. 5. 
The octahedron round calcium at A.6 is formed by 
oxygen atoms belonging to CO3 groups at B.7 and C.5. 
If the two different CO3 groups have rotated in dif- 
ferent directions, the octahedron will be distorted in 
projection [(Fig. 5(b)] which breaks rule (3). If they 
have rotated in the same direction [Fig. 5(a)], the 
projection of the octahedron retains its regular hex- 
agonal shape. 

It can be seen, however, that if we retain our original 
assumption according to which the line PQ lies in the 
plane of projection, both arrangements break rule (2). 
Though in Fig. 5(a) the octahedra round A.6 and B.4 
are both regular, they are of different sizes, with dif- 
ferent Ca-O lengths. Hence a vibration in which the 
oxygen atoms move entirely in the plane of projection 
does not satisfy our empirical rules. 

The remedy is fairly obvious. We must allow the 
oxygen atoms vertical movements of such a kind that 
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Fig.4. Projection on (0001), showing effects due to rigid-body 
movements of CO3 group about triad axis. Conventions as 
in Fig. 1. Short heavy lines represent directions of thermal 
displacement; those carrying arrows show clockwise rota- 
tion of groups centred at A.3 and B.7, while the others, 
belonging to groups centred at A.9 and C.5, have solid dots 
for clockwise rotation and open circles for anti-clockwise. 
Octahedra of 'static' structure centred at A.6 and B.4 are 
outlined. 
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decreased horizontal components of Ca-O are asso- 
ciated with increased vertical components and vice 
versa. This means a change in the angle (p. Since the 
an~le is non-ideal in the static structure, changes in it 
are permitted by rule (3). 

Consider the atom at hei~zht 5, whose movement is 
represented in Fig. 5(a) by the line PQ. Its Ca neigh- 
bours are at A.6 and B.4. To keep these distances equal 
whether the atom is at P or Q, PQ must lie at right 
angles to the line joining A.6 to B.4. The angle made 

c/6 
by this with the plane of projection is tan -1 

all/3 
which, for calcite, is about 44 °, with A.6 at the upper 
end. Hence the predicted angle between PQ and the 
triad axis is 44 °, with the end Q uppermost. Similar 
arguments applied to the atom at height 3 with dis- 
placement RS, attached to calcium atoms at B.4 and 
C.2, show that it should have the same slope, with R 
uppermost, i.e. the line lies between directions +c  and 
- b ,  as observed. The observed angle (Chessin, Hamil- 
ton & Post, 1965) is quoted as 48o+2  °. 

The two CO3 groups thus have rotational move- 
ments of the same sense but vertical movements of 
opposite senses. If we are right in assuming rigid-body 
movement, the carbon atoms will move vertically along 
the triad axis in phase with their oxygen atoms. There 
is no experimental evidence available about the thermal 

movements of the carbon atoms. It has been suggested 
(Cherin, Hamilton & Post, 1967) that the oxygen 
atoms will ride on the carbon atoms. As far as this 
mode is concerned, it should rather be pictured as the 
carbon atom riding on the oxygen atoms. 

We have thus found a mode in which concerted 
movements of all the oxygen atoms, fixed in direction 
and in relative phase, can give an instantaneous struc- 
ture at either extremity of the oscillation which satis- 
fies the empirical rules, and have shown that the direc- 
tion of displacement in this mode coincides with the 
experimentally observed direction of the longest prin- 
cipal axis of the thermal ellipsoid. 

D e s c r i p t i o n  o f  t h e  m o d e  

All atoms in the structure are involved in concerted 
movements. Alternate corner-linked octahedra are 
elongated or compressed along their triad axes, with- 
out change of Ca-O bond length;* thus their projec- 
tions on (0001) alternately shrink and swell (Fig. 6) 

* Actually the Ca-O bond length in the 'static' position 
must be very slightly shorter than at either extremity of the 
oscillation, but the difference is small compared with the other 
effects we are considering. The same is true even if we make 
QR an arc centred on the carbon atom, as strictly we should. 
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Fig.5. Same octahedra as in Fig.4, showing distortions due to (a) clockwise, (b) anti-clockwise rotation of CO3 group centred 

at C.5. 
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while remaining regular hexagons. In consequence, 
octahedra are rotated about their triad axes by an 
angle ~u, proportional to A¢0 (see Appendix), all with 
the same sense of rotation at the same extremity of 
the oscillation. 

Three-dimensionally, the oxygen atoms move in a 
line inclined at about 45 ° to the (0001) plane, and 
perpendicular to the C-O bond. 

By this movement, the triangle of oxygen atoms sur- 
rounding any particular carbon atom retains its shape 
and size, but suffers a screw-like displacement - rota- 
tion about the triad axis geared to translation along 
the axis. The simplest assumption about the carbon 
atom is that it remains rigidly at the centre of its 
oxygen triangle. 

It is important to distinguish between the rotation 
~, involved in the oscillation and the azimuthal tilt o9 
of the static structure. Though both are about the 
same axis, g is a consequence of distortion of the 
octahedron, while co represents a rigid-body move- 
ment; ~, has the same sense for all octahedra, while o) 
has opposite senses for alternate octahedra; ~, results 
in rotation of the CO3 group without change of size, 
while co results in shrinkage of the triangle without 
rotation. This is illustrated in Fig. 6. The horizontal 
component of the thermal displacement, PQ, is at 
right angles to the displacement of the static oxygen 
position (midpoint of PQ) from the ideal close-packed 
position O, and the two are independent in magnitude. 
The angle co, and the parameter ~ to which it is pro- 
portional, have fixed values and a fixed sign for a 
given structure at a given temperature. On the other 
hand, the angle corresponding to thermal motion oscil- 
lates between positive and negative values, through 
zero, and we take g as its extreme magnitude in either 
sense. 

It is implicit in our assumptions that the mode is 
an optic and not an acoustic one, because all lattice 
repeats are taken to be identical in phase. Again, in 
applying rule (3) we have necessarily retained point- 
symmetry 3. On the other hand, the glide-plane sym- 
metry of the space group R'3c has been lost. The space 
group of the instantaneous structure at either extremity 
of the oscillation is thus R3. 

Discussion 

It is clear from the above derivation that the reason 
for the existence of this mode lies in the relative soft- 
ness of the Ca octahedron against deformations along 
its triad axis which do not change the Ca-O bond 
length. The movement comprising cooperative flatten- 
ing and steepening of alternate octahedra leaves un- 
altered the overall lattice parameters a and c and the 
azimuthal tilt parameter ~ (except for second-order 
small changes ignored in this discussion). It requires 
no internal distortions of the CO3 group, which can 
thus remain rigid, provided its rotation is geared to 
translation. 

A comparable example of screw-like motion of a 
tightly bound group has been found in sodium alum 
(Cromer, Kay & Larson, 1967) for three oxygen atoms 
of the SO4 group. Here the major axes of the thermal 
ellipsoid of oxygen atoms not lying on the triad axis, 
while lying (as one would expect) nearly normal to the 
S-O bond, are also inclined at about 65 ° to the triad 
axis. Cromer, Kay & Larson showed that rotation 
without translation would bring about too large a 
change in the length of the other bonds to the oxygen 
atom (in this case hydrogen bonds for which the oxygen 
is acceptor), while if rotation is geared to translation 
the bond lengths can be kept nearly constant. Argu- 
ments as to the effect on the structure as a whole of 
such rigid-body movements of the 03 triangle are har- 
der to develop: there are more independently-variable 
structural requirements than in calcite, there is the 
possibility of distortion of the SO4 group by compres- 
sion along the triad axis, and it would be hard to assess 
the effect of changes in the O-H . . . O  angle, which 
is likely to be very 'soft'. 

For calcite, the evidence is incomplete, since the 
published data do not include information about the 
carbon atom. If its mean square displacements along 
and perpendicular to the triad axis were approximately 
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Fig.6. Same part of structure as in Fig.5(a). Octahedra at 
one extremity of oscillation shown by full thin lines, at other 
by dashed lines. Heavy short lines are projections of oxygen 
movements. Point O marks ideal close-packed position cor- 
responding to PQ. 
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equal to those of the components of the oxygen atom 
in the same directions, it would confirm the view that 
the mode described here is the most important. There 
is some evidence in support of it from the isomorphous 
sodium nitrate. Cherin, Hamilton & Post (1967), as- 
suming that the oxygen is 'riding' on the nitrogen but 
that the latter is moving isotropically with a mean- 
square displacement equal to that of oxygen in the 
direction along the H-O bond, have calculated correc- 
tions to the bond length, and obtain corrected lengths 
ranging from 1.259 to 1.266 A between room temper- 
ature and 150°C, 1.311 A at 200°C. With our model, 
the corrected lengths range from 1.247 to 1.254/~ up 
to 150°C, and the value at 200°C is 1.263 ,~,. This 
seems a more plausible result. The mean square dis- 
placement at 200°C is however so large that one can- 
not put too much weight on conclusions drawn from 
it by arguments involving the kind of approximations 
we have been making. 

Nothing in these arguments precludes the possibil- 
ity that other modes exist - including, perhaps, one 
in which the CO3 group is a flat trigonal pyramid with 
its apex alternately above and below its base. What 
they do indicate is that this particular mode can by it- 
self explain the most important observed features of 
the thermal vibration. 

It is interesting to compare the mode that we have 
found in calcite with what we should expect for the 
related structures LaA103 (de Rango, Tsoucaris & 
Zelwer, 1966) and LiNbO3 (high-temperature form) 
(Abrahams, Levinstein & Reddy, 1966; of. Megaw, 
1968a). These have the same space group R3c and are 
both based on a corner-linked octahedral framework, 
but are distinguished geometrically from CaCO3 by 
their positive value of ~ [see Fig. 3(a)] and physically 
by the different character of their cations. In LaAIO3 
and LiNbO3 the octahedra contain small highly- 
charged cations, and the oxygen atoms forming the 
edges are in such close contact that covalent repulsive 
forces are large. Such octahedra are likely to exhibit 
hardness against any change of shape, and experimen- 
tally it is found that in most structures they depart little 
from regularity (see Megaw, 1968b). This is in contrast 
to the very considerable variety of shapes found for Ca 
octahedra [for example in ?CazSiO4 (Smith, Majumdar 
& Ordway, 1965)] where the central atom is so large 
that, for a regular shape, the corner oxygen atoms are 
not in contact with each other, and distortion is there- 
fore very easy. On the other hand, in LaAIO3 and 
LiNbO3 the bond to the non-octahedral cation is weak, 
both in its length and its angular relationship - in 
contrast to the C-O bond in calcite. It is this bond 
which effectively controls the azimuthal tilt angle. 
(Some part may be played by the stiffness of the bond 
angle AI-O-A1 or Nb-O-Nb,  but it is small enough 
to ignore for our present purposes.) Hence in these 
structures we expect a mode in which the octahedra 
behave as rigid units but the oscillations involve 
changes of the azimuthal tilt angle. 

Thermal expansion 

Qualitatively, one can see the effect of the predicted 
mode in calcite on the thermal expansion. Large ther- 
mal expansions are not to be associated directly with 
directions of large thermal amplitudes, but with direc- 
tions of forces in respect of which, locally, the struc- 
ture is weak. In calcite, the weakness is that of the 
Ca-O octahedron along its triad axis, all other move- 
ments being, in a sense, driven by this one. The force 
tending to produce distortion is, as we saw, electro- 
static, and independent of temperature; the shape- 
maintaining forces decrease as the thermal amplitudes 
increase. Hence we expect decrease of ~0 with increas- 
ing temperature; the octahedron, already steeper than 
the ideal, becomes more so. 

With our usual assumptions about constant bond 
lengths, we find the following geometrical relations: 

Aa/a= 0-5A¢, Ac/c = - 1.4dip. 

The corresponding contributions to the thermal ex- 
pansion are 

ea=O'5d~o/dt, c o = -  1.4dtp/dt ; e e / e a = - 2 " 8 .  

But we expect dfo/dt to be negative. Hence, if this effect 
were the whole source of thermal expansion, we should 
have a negative expansion in the (0001) plane and a 
positive expansion nearly 3 times as large at right 
angles to it. 

Experimental values found by Chessin, Hamilton & 
Post (1965) are c~a= - 3  x 10 -6 deg -1, 0¢e=25 x 10 -6 
deg -1. The signs agree with expectation, but the ratio 
OCc/O~a is larger than expected if the change of octa- 
hedron shape is the only effect. It is, however reasonable 
to suppose that there will also be a small increase of 
bond length, which we may take as making an iso- 
tropic contribution. Suppose its magnitude is x x 10 -6. 
Then the ratio ec/ea, derived from experimental data, 

2 5 - x  
will be- - -  ; equating this to the geometrical value, 

- 3 - x  
-2 .8 ,  we find x=4 .  An expansion coefficient of 
4 x 10 -6 is smaller than that of CaO, larger than that 
of diamond, and may be regarded as very reasonable 
for bond-length effects in calcite. The corresponding 
value of d~o/dt is - 14 x 10 -6 rad deg -1, which implies 
a decrease of 5' in tp for a temperature increase of 
100°C. 

It is interesting to compare the expansion coefficients 
for sodium nitrate with those for calcite. They are very 
much larger, 9 × 10 -6 and 114 × 10 -6 deg -1 respectively 
(Cherin, Hamilton & Post, 1967), giving x=35  and 
d~/dt = - 52 × 10 -6 rad deg -1. These values are so large 
that it is not safe to assume the validity of the ap- 
proximations which were acceptable for calcite; never- 
theless it seems fairly clear that other modes than the 
one we have been examining are becoming of com- 
parable importance. 

Turning to the perovskite structures, we see that in 
LaAIO3 the weakness is in the A1-O-AI angle (or in 
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the La-O bonds which serve as struts to maintain the 
angle). Here the effect of increasing importance of 
electrostatic cation-cation repulsions relative to 
nearest-neighbour forces is a tendency to straighten 
out the AI-O-A1 line. This implies an increase of 4 
with increasing temperature, until it reaches its ideal 
value of-~ (the straight-line value). But straightening 
contributes only to the coefficient aa, not to ac. The 
observed values (calculated from data of Geller & Bala, 
1956) are about 13 x 10 .6 and 7 x 10 .6 deg -~ respec- 
tively (between room temperature and 250°C). We 
may attribute 7 x 10 -6 deg -t to a bond-length expan- 
sion, leaving 6x 10 .6 deg -1 to be accounted for by 
change of azimuthal tilt angle. 

Conclusion 

Both types of structure considered above thus illustrate 
the importance of recognizing the occurrence of 'soft' 
bond angles in the static structure. This is a preliminary 
to the identification of important lattice modes. It also 
allows an analysis of the thermal expansion, associat- 
ing part of it with such modes, accounting for the 
anisotropy and leaving only a smaller roughly isotropic 
part to be attributed to bond-length expansion. 

APPENDIX 

Geometrical relations 
In Fig. 7, let A be the projection of Ca, C that of 

carbon, O the position of the oxygen atom for ideal 
close packing, M its position in the static structure, 
P the projection of the extreme position during an 
oscillation. Three-dimensionally, the positions corre- 
sponding to C, M, and O lie in the same plane, A at 
a height c/12 above it, and P at a height Uv below it. 
We have also 

A O  =½a 

O M =  - ~ a  (definition of 4) 

M P  = uh (definition of un). 

Let /__ O A M  = co, / M A P  = ~,. 
Let the C-O and Ca-O bond lengths be ll and 12 

respectively; let the angle between Ca-O and the triad 
axis be ~0 (with subscripts, where necessary, specifying 
the projected position of the oxygen atom). 

Since ¢p is close to its ideal value, cos -1 1/1/3, for 
numerical evaluation of coefficients of first-order small 
quantities (such as terms in ~a, uh, or uv) we may write 

sin~0=1/~, cos~0=}"½, tan~0=l/2 . 

(i) For the static structure, 

A M = l z  sin ~OM=(AOZ+2AO . O M  cos 60 ° + O M 2 )  ~/z 

= a ( l -  34 +942)~/2 
3 

( l) 

c 
12 c o s  ~0M = - f f  . ( 2 )  

Hence 

and 

4 a  
tan ¢M = - -  (1 - 3 4  + 942) x/2 (3) 

c 

Moreover, 
/, =a(~ +4).  (5) 

Equations (3), (4), (5), give the 'physical' parameters 
Ix, 12, ~p in terms of the geometrical parameters a, c, 4. 

(ii) From (1) and (5), 

(/z sin 09~) z - 12 = - ~a z . 

Substituting, from (5), 

- ~ a = ½ a - l l  , 

we get 
(12 sin rpM) 2 -- 12 = ½a 2 - all . (6) 

This is a quadratic in a, giving 

a=gfl~ [l  + { (212sin~°M/lx) 2 - 1  

(Here the + sign for the square root has been chosen 
because a must be positive.) Writing 

(2/2 sin ~oM/lO 2 -- 1 
.... 3 _g2 (8) 

we have 
a =-}la(1 + g ) .  (9) 

Substitution in (5) gives 

- 4  =~ g -  I 
g + l  

Moreover 
c= 1212 cos ~OM. 

(10) 

(11) 

A 

0 M C 

Fig.7.  Project ion on (0001), to show rela t ion between inter- 
a tomic  distances,  d i sp lacement  of  oxygen f rom ideal posi-  
t ion, and thermal  ampl i tude .  
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Equations (8), (9), (10), (11) give the geometrical 
(directly observable) parameters a, c, ~, in terms of the 
'physical' parameters 11, 12, ~0. 

(iii) Further, 

c o = / O A M =  OMsin60°  31/3 
AO - 2 ~=  - 2.6~ (12) 

This relates the azimuthal tilt angle to the atomic posi- 
tion parameter. 

(iv) To find the variation of (p with ~ or co, we elim- 
inate a by using (1) and (5), and obtain 

(12) 2 9~ (13) 
T sin2 9 = 1 - ( 1 - + - 3 ~ -  " 

Differentiation with ll/12 constant gives 

d~oM 27 ( l , ) 2 (  6~ x ) ( 1 + 3 ~ ) _ 2 .  
d¢ = - 2 1 / 2  ~ 1 1+3~ 

Substitution of observed values of l~, /2, ~, gives, to a 
rough approximation, 

d_qgM = _ 8 (14) 
d~ 

or, using (12), 
d~oM = 3. (15) 
do  

(v) To find the variation of a and c with ~0, assuming 
ll, 12 constant, we use (7) and (11): 

da _ 4 [ 12 ] 2 sin q~M COS ~0M do) (16) 
a 3 \TI!  -g( i -+g)  " 

and 

Hence 

Also 

g =  1"63. 

d a  
-0.5d~0. (17) 

a 

d__.5_c = -  sin____~_M drp 
c c o s  09M 

=- l .4d~o .  (18) 

Hence decrease of cp, i.e. a steepening of the octahedron, 
produces an increase in c and a decrease in a (com- 
parable to a Poisson contraction, though with a dif- 
ferent physical origin) in the ratio 

dc/d_a = - - 2 " 8 .  (19) 
c l a  

(vi) In the vibrating structure, we are interested in 
the inclination of the vibration direction to the hori- 
zontal plane, i.e. in tan-luv/ul, At the centre of the 
oscillation we have 

(c)2 
l~=AM2+ --~ 

and at the extremity 
t2 2 

By our hypothesis, these two values must be equal. But 

A p 2 = A M 2 - 2 A M . M P s i n  ( 6 - o ) )  +Mp2 (20) 

where MP= uh. Hence 

2 C 

Neglecting terms in u~ and uS, and using (11), 

(°) 1/3/2 sin q)M 1 -- l/3 U~ = 212 COS ~OMUv 

o r  

( uh 2 tanq)M 1-- 

 3(1+3 ) 
= 2 2 ~ = 1 " 0 9 = t a n 4 7 ½  ° (21) 

(vii) Let the rotation of the carbonate group be/1, i.e. 

it=/__ MCP=uh/ll . (22) 

We can relate this to the rotation of the octahedron V, 
which is / MAP, 

MPcos  ( 6  -co)  uh cos ( 6  - o )  ) 

P' . . . . .  A M - ~ s-in~- - 

ll 
= I/~ (1+ 1/3co) ~ / z .  

Using (12) and evaluating, 

~' - 1/3(1+0"34) 1 /t ~ =0.45.  (23) 

(viii) We can also relate to/z the change in ~0 due to 
the vibration. 

(/2 sin ~op)2=Ap2=(12 sin q~M) 2 

--2uhl2 sin ~oM sin (-~ --¢o) 

and 

(/2COS~Op) 2 =  ~ + U v  

)2 
_~ c +Uh from (21) 

Hence 

(tan q)p)2= 12./_2 sin tpM 1-- 
C ( 2)] uh l / 3 - o )  + . (24) 

sin CM COS ~OM 
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Differentiating with respect to uh, keeping everything 
else constant, 

A~0p - cos ~o sin ~o 1/ _ 3 - co + . . . . .  12 
2 sm tp cos (p- 

Uh 
= - 1 . 3 ~  = - 0 . 7 .  (25) 

Hence, from (23), 

9,=0.65 13~0PI. (26) 

This may be compared with the relation between the 
static azimuthal tilt co and A~0~vt, from (15) 

Ao) = 0.33Atp,~. (27) 

We thus find that the static deformation of ~0 produced 
by a given azimuthal tilt is about twice the instanta- 
neous deformation produced by an oscillation ampli- 
tude of the same magnitude. 
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D6sordre Lin6aire darts les Cristaux 
(eas du Silieium, du Quartz, et des P6rovskites Ferro61eetriques) 

PAR R. COMICS, M. LAMBERT Ea" A. GUINmR 

Service de Physique des Solides,* Facultd des Sciences, 91-Orsay, France 

(Refu le 20ctobre 1969) 

Many crystals produce a diffuse scattering of X-rays which is localized in a series of relplanes. It is 
shown that the corresponding linear disorder in the crystal may have various origins. In silicon, the 
scattering is due to thermal vibrations and is well explained by the elastic properties of the crystal. 
In neutron irradiated quartz the radiation damage is responsible for the major part of the scattering. 
The case of BaTiO3 and KNbO3 is discussed in detail. A linear disorder is proposed which accounts 
better for the different distributions of the scattering in the 4 allotropic phases than the alternative 
explanation of the soft mode. In spite of some neutron inelastic scattering results it is not yet pos- 
sible to distinguish between static and dynamic disorder. 

Le d~sordre lin~aire 

Quand un cristal produit une diffusion coh6rente de 
rayons X en dehors des directions de diffraction, celle- 
ci est n6cessairement due ~. un d6faut de p&iodicit6 du 
cristal. Si le d6sordre est tr~s irr6gulier, le rayonnement 
diffus6 est r6parti assez uniform6ment dans toutes les 
directions de l'espace et, en cons6quence, cette diffusion 
est faible partout, doric difficile h d6tecter et b. caract6- 
riser: en fait, elle a grande chance de rester inaperque ~. 
moins que l'exp6rimentateur ait eu une raison sp6ciale 
de la rechercher. Par contre, si la diffusion est concen- 
tr6e en d'6troites r6gions du diagramme, elle devient 
observable. I1 n'est donc pas 6tonnant que ce soient de 

* Laboratoire associ6 au C.N.R.S. 

tels cas qui aient 6t6 signal6s. C'est l 'un de ces cas, qui 
a fait l'objet de nombreuses publications depuis plu- 
sieurs ann6es et pr6sente un int6r~t assez g6n6ral, que 
nous allons 6tudier ici. 

Remarquons que le diagramme photographique est 
presque indispensable pour l 'observation globale de la 
r6partition de diffusions dont on ne connait pas, a 
priori, la nature, Or, les g6n6rateurs de rayons X mono- 
chromatis6s 6quip6s de chambres photographiques 
sont rares, tandis que tout appareil de diffraction 61ec- 
tronique permet d'observer de telles diffusions. Aussi 
est-il naturel que les ph6nombnes dont nous allons 
parler aient 6t6 mis en 6vidence avec les 61ectrons 
plut6t qu'avec les rayons X. D'autre part les rayons X 
exigent un 6chantillon sous forme de cristal unique de 
dimensions bien plus consid6rables que les 61ectrons, 


